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A. STATEMENT OF THE PROBLEM STUDIED

The problem studied in this ARO project is automated target identification and tracking
using efficient multiresolution image processing techniques. Advanced forward-looking
infrared (FLIR) systems are capable of producing very high-resolution imagery at large
frame rates and generating an enormous amount of raw image data. Infrared search and track
(IRST) procedures must process this information reliably in a variety of battlefield
environments and imaging situations. Corruptive image noise introduced by dust, smoke or
other clutter can degrade the performance of an IRST system. Vibration effects can
introduce image blurring, an increase in the minimum detection temperature (MDT),
amplification of high frequency noise, reduced display comprehensibility, and reduced
signal-to-noise ratios (SNR) (Miller, 1993). Furthermore, bugs, salt, leaves, fuel and
moisture may obstruct the FLIR protective window.

Imaging under battlefield conditions dramatically increases the difficulty of the IRST
task. In addition to environmental conditions, signal processing algorithms are further
constrained to operate with minimal computational resources in order to reduce the overall
weight and size of the system package. Given modern sensors that are capable of producing
raw data at rates of over one million pixels per second, traditional fixed resolution
approaches introduce exceptional computational burden. At this data rate, the fixed
resolution (correlation based) approach to automatic target recognition requires over a billion
operations per second and precludes real time processing (Nasr, 1989; Molley, 1989).

The majority of detail processed by fixed resolution imaging systems is irrelevant for the
IRST task. Small scale features and channel noise increase the computational requirements
of the system but introduce little information for improved target detection. Additionally, the
discrimination and extraction of region boundaries for potential targets are complicated by
the higher resolution imagery. For improved IRST performance and decreased
computational requirements, a hierarchical approach should be employed.  These
architectures mimic biological vision systems by initially searching coarse scale scene
representations. These coarse scale results may then be exploited to efficiently process finer
resolution data. For example, humans initially identify peripheral objects as potential regions
of interest, acquiring higher-resolution scene information by focusing on the region and then
deciding if the perceived object is present.

Biological search procedures are facilitated by the nonlinear distribution of visual sensors
within a biological vision system. However, the majority of FLIR sensors do not utilize
nonlinear sensor distributions. Instead, a foveating IRST system must replicate the
advantages of a nonlinear scene description with uniformly sampled data. This concept is
encapsulated in continuous scale space theory (Witkin, 1983), where it is proposed that an
infinite number of coarse scene representations may be created by filtering the original
imagery with a linear, scale generating, filter. The subsequent data structure can then be
queried in a manor analogous to the biological coarse-to-fine search, as objects are initially
identified in coarse scale scene representations that are absent of small scale clutter, fine
features, texture and noise. These initial coarse scale results are then used to guide and refine
higher resolution inspection, a process that terminates with the identification of features in
the original imagery.




The application of scale space theory to a practical IRST system is problematic.
Construction of scale space requires a large number (theoretically infinite) of scale
representations to follow features from coarse scale information to finer scene depictions.
Additionally, inspecting coarse scale imagery is computationally equivalent to fixed
resolution searches, as the original and coarse scale descriptions are stored at equivalent
sample densities. In application, these characteristics increase storage and computational
requirements and result in added system weight and power consumption. With limited
resources, direct use of scale space data structures in a battlefield environment is presently
unfeasible. Employing the robust properties of scale space in a resource critical IRST system
necessitates the quantization (via sampling) of scale space.

This report provides details on the engineering solution achieved during the course of the
ARO-sponsored research. Two multiresolution structures for image processing, the
anisotropic diffusion pyramid and the morphological pyramid, were developed and utilized in
target tracking. Several important advances were achieved in diffusion-based processing. The
anisotropic diffusion methods were extended to multigrid and multispectral implementations,
allowing multisensor tracking. The parameter selection processes were automated and the
diffusion methods were made more robust through morphological filtering. The tracking
simulation results show substantive improvements in both solution time and solution quality.




B. SUMMARY OF THE MOST IMPORTANT RESULTS

Scale Space

Scale space filtering was initially developed to manage the relationship between edge
information over varying resolution. Since many signal characteristics, most notably
derivatives, are calculated over a region where the region size influences the descriptive
measurement, Witkin introduced scale space as a collection of signal representations, derived
from the original image and generated by a scale space filter (Witkin, 1983). Scale space
does not attempt to define an optimal scale for feature identification but provides a method
for establishing correspondence between edges found in heavily filtered signal
representations and their location in the original signal.

Construction of scale space is straightforward, and traditionally begins by filtering the
original signal with an FIR filter of varying width. Hyper-planes within scale space contain a
single filtered representation of the signal, while filtering the signal with a continuum of filter
widths produces scale space. For a two-dimensional image, scale space may be visualized as
a three-dimensional cube, containing an infinite number of signal descriptions stacked upon

Figure 1. Scale space for the cameraman image. The original image is located at the
top of the cube and lower levels are occupied by coarser representations of the scene.
For this example, the coarse scale images are constructed by smoothing the original
image with a Gaussian filter.




one another. These representations are ordered by their respective filter scale parameter.
From these filtered images, features may be identified using traditional detection methods.
An example scale space is shown in Figure 1.

Plotting the locations of detected features versus the continuous scale parameter is
defined as the scale space image and an example is displayed in Figure 2. Within these
structures, objects may be recognized at coarse resolution representations and traced to their
origin. This is referred to as a coarse to fine search and encompasses the power of scale
space theory, allowing the initial identification of significant features to occur in the absence
of spurious derivative results. The exact location of these edge points in the original image
may then be obtained by traversing scale space towards finer resolution, resulting in a robust
method for fusing multi-scale information and a procedure well suited to the edge detection
problem.

Specification of a viable scale space filter requires fulfilling a specific smoothing criteria:
if a feature is tracked across increasing scale, it should disappear. Conversely, a new feature
should never appear while scale increases, as coarse resolution representations would no
longer correspond to the original signal. Guaranteeing the presence of coarse scale objects in
finer scene representations is expressed as spatial causality, maintaining a cause and effect

Figure 2. Scale space and the scale space image. Scale space images are displayed
on the sides of the cube and show how smaller features disappear rapidly as scale is
increased. Connectivity between levels is defined as spatial causality, as all coarse
scale features correspond to features in the higher resolution representations.




relationship for features, and is a necessary condition for application of the multi-scale coarse
to fine search method.

The spatial causality criterion allows the specification of an optimal filter for scale space
generation. Witkin initially restricted the scale generating filter to be symmetric, strictly
decreasing about the mean, and linear. As a result of this definition, it has been shown that
the Gaussian kernel is the only filter capable of satisfying these constraints in one-dimension
while maintaining spatial causality (Babaud, 1986). The uniqueness of the Gaussian kernel
for scale space construction has since been extended to higher dimensions (You et al., 1996),
discrete signals (Lindeberg, 1990), and the larger class of unsmooth kernels (Wu, 1990). The
Gaussian filter also has the unique property of minimizing the uncertainty principle (Marr,
1980).

Even with the discovery of a unique scale generating filter, application of scale space
theory to practical problems is limited. Requiring an infinite (or near infinite) number of
scale representations necessitates large storage requirements, and performing feature
detection tasks on each resolution level is computationally expensive. Efficient execution of
a coarse to fine search demands quantization of the scale parameter, and is formalized by the
image pyramid.

i

Multi-scale Image Pyramids

Image pyramids are a discrete
representation of scale space. By
requiring the calculation of fewer
scene representations, they reduce the
computational requirements of scale
space construction and the coarse-to-
fine search. Image pyramids also
introduce  additional  processing
speed-up by coupling their choice of
scale retention to the sampling
properties of a scale generating
operator. Allowing the decimation of
coarse  resolution representations

Figure 3. An image pyramid, constructed by

results in decreased storage filtering the original image and subsampling. The
requirements, faster scale space original image is located at the bottom of the
construction, and a logarithmic pyramid and coarser scale representations occupy

successively higher pyramid levels. For this
example, the coarse scale images are constructed
by smoothing the original image with a Gaussian

improvement in coarse-to-fine
matches.  Theoretically, an image

pyramid will provide a very efficient filter.
and robust solution to the IRST
problem.

Construction of an image pyramid begins by filtering the original signal. This coarser
resolution representation, now satisfying some sampling criterion, is then decimated. The
sampling process traditionally consists of discarding all pixels belonging to the even rows
and columns of the image. Subsequent pyramid levels are created by iteratively filtering and




subsampling the previous resolution representation, and the end product is a set of image
descriptions, each of smaller size than the original.

For example, Gaussian pyramids are constructed by using a Gaussian kernel as the scale
generating filter and applying Shannon’s sampling theorem for the decimation operation.
Mathematically, the construction of pyramid level L of image I can be described as

I, =[G, *I,_]; (1)

where Gy is a Gaussian scale generating filter of standard deviation o, 1S denotes
subsampling by a factor of S within each row and column, and I, is the original image. To
remove frequencies below the Nyquist rate, the discrete Gaussian filter is defined to have
kernel width 25/m (Burt, 1981). Sorting these images according to scale is shown graphically
in Figure 3 and presents the visual appearance of a pyramid structure, hence the name image
pyramid.

Generation of an image pyramid provides significant performance enhancement for the
coarse-to-fine search. Initialized on the coarse resolutions in the pyramid, the search
procedure needs to only fully search a subsampled image representation. The result of this
first search is then used to guide and refine progressively higher resolution inspections,
restricting these subsequent examinations to small regions within the next scale description.
Ignoring the effort for pyramid construction, the increase in computational cost of searchin
the full resolution image, as compared to the multi-scale search, has been shown to be 52 f
where S is the sample factor and L is the coarsest level of the search (Wong, 1978). The
performance improvement between an image pyramid and traditional scale space would be
the same, actually amplified by the decreased construction costs of an image pyramid.

Searching an image pyramid requires causality to hold between scale representations.
Features that exist at coarse scale must correspond to higher resolution objects. Among the
linear kernels, the Gaussian filter is the only operator that maintains spatial causality
(Babaud, 1986). Unfortunately, the Gaussian kernel possesses several undesirable
characteristics for quantizing the theory of scale space within an IRST system. Specifically,
as the scale parameter (the width of the Gaussian) of the filter is increased, regions tend to
merge and edges move due to the lowpass response of the filter. In continuous scale space,
movement between resolution representations presents no obstacle to the coarse-to-fine
search and is accommodated by allowing minimal scale change between neighboring levels.
Image pyramids contain a limited number of scale representations, reducing the number of
scales available to a multi-scale IRST procedure. With fewer scale depictions, large feature
movement between pyramid levels is possible. This source of error dramatically decreases
system robustness and performance. In order to attain the theoretical promise of multi-scale
search and track, nonlinear scale generating operators must be considered. An ideal operator
would describe a scale space with minimum feature movement, as important objects maintain
the same spatial location independent of scale. One scale generating filter, anisotropic
diffusion, can be designed specifically for this task.

Anisotropic Diffusion

Anisotropic diffusion is a departure from traditional linear filtering. Linear filters are
widely used in signal processing and are theoretically well developed. The anisotropic
diffusion equation modifies the behavior of one member of the linear filter class, the




Gaussian kernel. In the traditional scale space representation, a Gaussian pyramid is usually
constructed by convolving the original image with a suitable Gaussian kernel and
subsampling. This multi-scale structure can also be implemented with the use of the heat
equation (Koenderink, 1984). For an image defined on a discrete grid, this process is
approximated by the following partial differential equation (PDE):

ol 2
> Vi, 2)
where I is the input signal, V? is the discrete
Laplacian, and ¢ is the solution time or scale
parameter.

Anisotropic  diffusion  modifies the
smoothing properties of the Gaussian kernel
by adaptively smoothing within regions while
inhibiting intra-region interaction. Solution of
the heat equation is completely defined by its
Green’s function, the Gaussian kernel, with the
width of the resulting kernel proportional to
solution time (Widder, 1975). In creating a
scale generating process with the capability of
maintaining region integrity, the heat equation
may be modified to incorporate a spatially
varying damping coefficient. = The PDE
becomes

%:— = div(c-VI), 3)

where I is the input signal, div is the
divergence operator, V is the discrete gradient,
and c is the adaptive diffusion coefficient. For
a two dimensional image, one possible
realization is

L., =L +At-(c,V I +¢,V, +1c,V, +1c,V,I)
@
where At is the solution time step, Vi, Vs, Vi,

and Vi are the gradients (simple differences)
in the north, south, east, and west directions,

Figure 4. A visual example of filtering with

respectively, and cy, cs, cg, and cwy are the the anisotropic diffusion equation. The
diffusion coefficients in the north, south, east, original image is located at the top, and its
and west directions’ respectively (Perona, filtered result is located below. Notice how

the diffusion process smoothes within the
boundaries of an object but preserves edge
locations.

1990). These coefficients are traditionally
bounded to the set [0,1] and decrease with




increasing gradient, effectively inhibiting smoothing in regions of possible edge location. An
example of filtering an image with the anisotropic diffusion equation is presented in Figure 4.

Construction of the anisotropic diffusion coefficient defines the performance of diffusion.
With the initial goal of preserving regions of possible transition, varying the coefficient
relative to local gradient is well motivated. In the first use of anisotropic diffusion as a
filtering process, two possible realizations of the diffusion coefficient were suggested
(Perona, 1990). The first is of Gaussian shape and expressed as

_[II_V'_IIT

cVD)=e ' * /, (5)
while the second suggestion is
1

VI)=——. 6
c(VI) v ©

1+

k

In both diffusion coefficients, a gradient
threshold, %, is introduced and its selection
quantifies the minimum gradient magnitude
which should be preserved by the smoothing
mechanism.

In creating an image pyramid using
anisotropic diffusion, one would successively
diffuse and then subsample the original image.
Unfortunately, anisotropic diffusion does not
satisfy requirements for image pyramid
construction, as nonlinearly filtered signals do
not satisfy traditional sampling theorems.
Without the assistance of an image pyramid,
creating coarse scene information
computationally expensive and searching these
scale representations provides no performance
increase, as the resolution of the original and
coarse scene information are identical. More
problematic for the application of anisotropic
diffusion is that the diffusive process does not
guarantee the removal of any information. For
example, consider the one dimensional pulse
train shown in Figure 5, where the pulse
heights are identical and defined to be greater
than the gradient threshold, k, of the diffusion
coefficient. Anisotropic diffusion is designed
to preserve regions of high gradient, and the
traditional definitions for damping coefficients
result in coefficient values near zero at the

Originel Saqence

(@

Fitored Reaul

(b)

Figure 5. An input sequence that will not
be smoothed by the diffusion process: (a)
the original sequence and (b) it's filtered
result. The gradient threshold of the
diffusion system is represented by k, and
all gradients larger than this threshold are
defined to be preserved.




pulse edges. Since the diffusion update depends on a weighted sum of the product of local
coefficient and gradient magnitudes, smoothing will not occur. The filtered result will be
identical to the original, and changes in solution time, or scale, will not effect information
removal. At best, scale spaces constructed with traditional anisotropic diffusion present a
robust solution to the IRST problem, but at increased computational cost.

IRST filtering problems are motivated by the need to remove noise and other spurious
detail. Instead, traditional anisotropic diffusion preserves all regions with high contrast. This
characteristic introduces difficulties for the application of anisotropic diffusion to any
filtering problem, and researchers have spent time addressing it. The result is a modification
to the diffusion coefficient, creating a diffusion equation that is spatially aware. In these
modified diffusion expressions, the goals of the nonlinear smoothing process are expanded,
seeking to preserve features of high gradient and to remove regions of small spatial scale.

Spatially Aware Anisotropic Diffusion

Increasing the scope of the diffusion coefficient calculation enlarges the scale of a
diffusion equation. By incorporating greater spatial knowledge of the signal into the decision
to diffuse, the filtering process is allowed to smooth small regions regardless of local
contrast. A method providing the anisotropic diffusion equation with a direct specification of
scale was first proposed by Catté et al. (Catté, 1992), who suggest utilizing a Gaussian kernel
to spatially expand the coefficient computation. Using the original coefficient expression in
(5) as an example, a possible spatially aware diffusion coefficient is specified as

I6o*vy ]2

c(VI):e{ ) )

where Gy is a Gaussian kernel with standard deviation o.

Other linear filters have been proposed to replace the Gaussian kernel in (7) (Torkamani-
Azar, 1996), and proper selection of a spatially aware anisotropic diffusion coefficient is
usually motivated by underlying assumptions of the noise distribution within the original
signal. While the use of a linear filter within the diffusion coefficient may be viewed as
“against the spirit of anisotropic diffusion” (You et al., 1996), initial results display their
ability to remove small regions of high contrast. Figure 6 presents a visual example of the
smoothing performance of a scale aware anisotropic diffusion process, showing that filters
using the spatially enlarged diffusion coefficients are capable of smoothing, and eventually
removing, noise.

A major obstacle in constructing image pyramids with spatially aware anisotropic
diffusion implementations is that these new smoothing operators embody conflicting
definitions of scale. Traditional diffusion equations contain a single scale parameter,
corresponding to solution time. Spatially aware anisotropic diffusion operations incorporate
a second scale parameter, describing the region over which a diffusion coefficient is
calculated. This second parameter also effects the gradient magnitudes maintained by the
nonlinear filter. The result is increased feature movement between scale representations and
additional inefficiencies in a coarse-to-fine search. The difficulties are overcome in the next
section, where a novel morphological diffusion coefficient is discussed. This new diffusion
operator is capable of simultaneously smoothing a signal while maintaining edge locations.




Figure 6. A visual example of filtering with the spatially aware anisotropic diffusion
equation: (a) original imagery; (b) imagery corrupted with 15% salt and pepper noise; (c)
corrupted imagery after traditional anisotropic diffusion; (d) corrupted imagery after
spatially aware anisotropic diffusion. Traditional anisotropic diffusion is unable to remove
environmental clutter, small features, texture or noise. Spatially aware anisotropic diffusion
is capable of smoothing small regions of high contrast, as evident in the removal of the
impulse noise. Spatial smoothing does reintroduce interactions across region boundaries,
and this will be discussed in the next section.
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Morphological Anisotropic Diffusion

Anisotropic diffusion was originally designed to generate scale spaces with minimal
feature movement. Construction of scale spaces with this property alleviates problems in
applying coarse-to-fine search methods to image pyramids. Image pyramids, however,
require a scale generating process that guarantees the removal of information and satisfies
necessary sampling conditions. While traditional anisotropic diffusion expressions are
incapable of generating these filtered results, scale aware extensions of the anisotropic
diffusion equation attempt to smooth regions of low contrast and small spatial size. A
smoothing operator possessing these characteristics would generate a filtered result suitable
for sampling and an image pyramid suitable for multi-scale IRST methods.

Initial scale aware realizations of the anisotropic diffusion equation incorporate linear
filters into the diffusion coefficient and effectively increase the scope of the coefficient
calculation, allowing the smoothing of small regions. However, these expressions are unable
to smooth regions of small gradient while removing small scale features. Scale aware
diffusion requires regions to be identified without removing their high frequency content.
This criterion suggests the use of nonlinear filters in increasing the scope of the coefficient
calculation.

Morphological operators are able to produce image representations of increasing scale
without eradicating edges. Approaching image processing from the vantage point of human
perception, morphological operators simplify image data, preserve essential shape
characteristics and eliminate irrelevancies (Toet, 1989; Haralick, 1987). The use of
mathematical morphology in digital signal processing is defined with two fundamental

~ operators - erosion and dilation. Implementation of the erosion and dilation filters is similar
- to a median filter and is accomplished with nonlinear minimum and maximum operations.

An erosion removes regions of high intensity and is expressed as

10M = le{l(x— )} ®)

where M is the structuring element and © is the erosion operator. The mathematical dual of
erosion is dilation and removes regions of low contrast by computing the maximum value
within a region. Dilation is expressed as

I1®M = max{I(x- y)}, ©))
yeM

where @ is the dilation operator. In both fundamental filters, the realization of the
structuring element defines the shape and scale of the morphological filter and conceptually
denotes the signal region from which the minimum (or maximum) value is drawn.
Developing an equivalent gradient representation of the morphological operators furthers
understanding of these nonlinear filters. Analysis begins with the step function, which has
been shown to be an eigenfunction of the morphological system (Maragos, 1995). The effect
of the morphological filters on the step function is shown in Figure 7. Notice that the
resulting functions are not smoothed representations of the signal and, instead, are simply
shifted by half the width of the structuring element. Applying an erosion to the edge function
translates the signal to the right. Alternatively, filtering with a dilation shifts it to the left.
The sequential application of these filters results in an infinite number of paths for the step
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Figure 7. Effect of the fundamental morphological filters on a step function. The equivalent
gradient representations are shown in (b).

function gradient to travel, but never modifies the gradient magnitude. Figure 7b displays the
right-hand derivatives of the function and its filtered results, again showing the movement of
the edge.

A complete gradient understanding of the morphological operators continues with
investigation of the negative of the original step function. The signal and its filtered results
are displayed in Figure 8. Again, the morphological filters produce translation of the step
edge and do not effect the signal amplitude. An important observation is that while the
erosion translates the positive edge of Figure 7 to the right, it translates the negative edge in
Figure 8 to the left. The dilation produces a similar result, transporting positive and negative
edges in opposite directions. This property of sign dependent translation defines the
performance of the morphological filters.
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Figure 8. Effect of the fundamental morphological filters on a negative step function. The
equivalent gradient representations are shown in (b).

Morphological filtering occurs as negative and positive gradients interact and remove
each other. As displayed with the finite width edge model, eroding the function will
eliminate it as the structuring element of the morphological filter becomes large. Results of
filtering the finite width edge function using an erosion operation with several different
structuring element sizes are shown in Figure 9, and equivalent gradient representations are
shown in Figure 9b.
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Figure 9. Eroding a finite width step function with structuring elements of different size.
From top to bottom: the original finite width step function; the finite width step function
eroded with a small structuring element; the finite width step function eroded by a larger
structuring element; the finite width step function eroded with a structuring element larger
than W/2. The equivalent gradient representations are shown in (b).




Analysis of the morphological operators becomes more difficult to visualize with an
arbitrary signal. Relying on the eigenfunction properties of the step function, the sign
dependent gradient representations, presented above, define the performance of the
fundamental morphological filters with respect to edge preservation and movement. An
erosion may be expressed as

VL,, (x)= V*I,(x—%f)w-l,(x +%), (10)

where t+At is the width of the structuring element, VI, is the original image, V" is the

maximum value of either the gradient or zero, V™ is the minimum value of either the
gradient or zero, and At is the time step. A dilation is realized by reversing the direction of
gradient propagation and expressed as

VIHA,(x)=V+I,(x+%£)+V'I,(x—%). (11)

For discrete implementations of these fundamental morphological filters, Af should be one.

Application of a single erosion or dilation operation removes regions dependent on
intensity. It also results in edge movement. In the anisotropic diffusion equation, it is of
interest to remove regions independent of intensity and without inducing edge movement.
The sequential application of the fundamental filters can produce morphological systems
realizing these goals. An open operation removes regions of low intensity, without
introducing feature drift, and is implemented by first eroding a signal and then dilating the
result. The close operation removes regions of high intensity, without inducing feature drift,
and is implemented by dilating and eroding. Combinations of these higher level processes
remove regions independent of intensity and without edge movement.

The purpose of this section is to show that incorporating morphological filters into the
anisotropic diffusion equation creates a process that can remove features based solely on
gradient or spatial scale and is, therefore, applicable to image pyramid construction. This
section investigates the smoothing performance of the morphological filters on the step and
finite width edge models. All analysis is accomplished using the previously defined gradient
representations of the morphological filters and the anisotropic diffusion equation.

Spatial Smoothing

The spatial smoothing of a morphological anisotropic diffusion system is displayed with
the finite width step function. Considering a step function whose amplitude is greater than
the smoothing threshold, B(Kpc,?t), traditional anisotropic diffusion expressions will preserve
the gradients and maintain the feature. The goal of a scale aware diffusion process is to
remove the region, independent of gradient magnitude.

In describing a morphological filter which, when incorporated into the diffusion
coefficient, will smooth the finite width step function, it is necessary to define two properties
of the morphological filtering operation: the direction of gradient propagation and the
distance of gradient translation. The first characteristic, the direction of gradient
propagation, is defined by the morphological filter type and denotes whether positive
gradients are shifted to the right or left. (Negative gradients will be shifted in the opposite
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direction.) The second characteristic, the distance of gradient translation, describes the
spatial distance over which the gradients are moved and is defined by the solution time of the
morphological system or, equivalently, the structuring element size.

Using a morphological filtering operation to smooth a finite width step function provides
an initial description of morphological sequences suitable for incorporating into the diffusion
equation, and filtering the finite width step function requires that the gradients of the edge
model interact and remove each other. Remembering that the finite width step function is
constructed with a positive gradient located at the origin and a negative gradient located at
location W, where W is the width of the edge model, feature removal necessitates that
gradients move towards each other. It also requires that positive gradient must move to its
right while the negative gradient travels to its left.

Construction of the finite width step function defines the direction of gradient
propagation necessary for filtering, and interaction between the two gradients of the edge
model defines the distance of gradient translation. Removal of the finite width edge function
will occur when the positive and negative gradients interact, and since the gradients move
towards each other with equal speed, their interaction will occur at the center of the edge
model.  Specification of a morphological
operation which allows the diffusion equation
to smooth small objects requires a
morphological filtering sequence which shifts
positive gradients to the right a distance of
W/2. This requirement is shown graphically in
Figure 10, and an example morphological
sequence satisfying these requirements is
shown in (10), described by an erosion

operation. Solved for solution times greater - ! "”
thar} 'W, the.eros10n opc::ratlon .w111 translate Figure 10. Necessary gradient movement
positive gradients to the right a distance of W/2 for removing a finite width step function of
and is a candidate filter for inclusion within a width W with a morphological filter.

scale aware diffusion coefficient.

Scale aware diffusion expressions should
remove regions of width W, and the erosion
operation presented above satisfies this
requirement. Scale aware diffusion
expressions should also remove regions
smaller than the spatial smoothing goals of the ——
anisotropic diffusion equation, and analysis of
smaller finite width edge models develops
conditions necessary for their removal
Smoothing of a finite width step function with A

width n (0<n<W) still requires positive e . we
gradients be transported to the right, but only _ _

necessitates that they be translated over a Figure 11. Necessary gradient movement
di £ nh Th . ts f for removing all finite width step functions
1stancfe 0 n. : ; © requlremer.l s fot of width less than or equal to W with a
removing all finite width step functions of morphological filter.
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width W or less are shown graphically in Figure 11. An example morphological sequence
capable of satisfying these conditions is the erosion operation solved solution times greater
than W - the identical filtering operation derived for smoothing the larger finite width step
functions.

While study of the smaller finite width edge model did not refine the requirements of
candidate morphological sequences, analysis of the negative finite width step function further
constrains the construction of the morphological filter and motivates the need for a more
complex filter sequence. The negative finite width step function is given as

u,(x)=au@-auw0), O0<ns<W (12)

and should also be removed by the scale aware diffusion equation. Smoothing of this
function introduces different requirements on the direction of gradient propagation within the
morphological filter sequence, as the positive gradient of this edge model is located to the
right of the negative gradient. (The positive gradient of the original finite width step function
was located to the left of the negative gradient.) Filtering necessitates that the gradients
move towards one another, and for the negative finite width step function requires that the
positive gradient travel to its left and the
negative gradient travel to its right. Feature
removal will occur when the gradients interact
at the center of the edge model, n/2, and Figure
12 summarizes the requirements for removing
all of the negative finite width edge models. A
candidate morphological filter providing this
smoothing is the dilation operation presented in
(11) and solved for solution times greater than
w. - ' -
Consolidating the requirements for . .
removing both finite width step functions Figure 12. Necessary gradient movement
; . ; for removing all negative finite width step
concludes this subsection and defines the class function of width less than or equal to W
of morphological filters suitable for providing with a morphological filter.
a diffusion coefficient with the capability of
identifying and smoothing regions of small
spatial size. It has been shown that removing a
positive finite width step function requires a
morphological filter sequence which translates
positive gradients to the right and that
smoothing a negative finite width step function
requires a filtering operation capable of ) IR IS UV
translating positive gradients to the left. In
both smoothing examples, the original
gradients must be transported over a distance

-wiz ° wiz

Figure 13. Necessary gradient movement

equal to half the spatial smoothing goals of the for removing all negative and positive finite
anisotropic diffusion equation, W/2. These width step functions of width less than or
requirements are summarized graphically in equal to Wwith a morphological filter.
Figure 13.
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While the single application of an erosion
or dilation operation will not generate the

necessary smoothing performance for filtering e
both edge models, the sequential concatenation by
of these fundamental morphological operators —s

will produce a filter capable of satisfying these
requirements, transporting gradients throughout
the desired regions. Many morphological

operations could be constructed, and an = ; =
example morphological filter sequence, which . _

produces the necessary gradient movement, is Figure 14. Necessary gradient movement
shown eraphically in Fieure 14. The sequence for removing all negative and positive finite
. 'g p ,y . & N . q . width step functions of width less than or
18 I’eallzed by dllatlng the Slgnal Wlth SOlutlon equa' to W. The morphologica| sequence
time W+1 and then eroding the result with consists of: (a) dilation, (b) erosion, and (c)
solution time 2(W+1). This initially moves the erosion.

positive gradient over the region to the left,
removing positive finite width edge models, and then translates the gradient back to the
origin and through the region to the right, removing negative finite width edge models.
Analysis of the finite width step functions defines a class of morphological operators
which remove features of small scale and whose incorporation into a diffusion coefficient
would allow the anisotropic diffusion expression to smooth these small scale regions. The
purpose of the next subsection is to define a class of morphological filters which allows the
anisotropic diffusion equation to smooth regions of low contrast. After deriving these
smoothing conditions, the section will conclude that incorporating certain morphological
filter sequences into a diffusive process develops a smoothing operation capable of
simultaneously removing objects of small spatial size while smoothing gradients of small
scale.

Gradient Smoothing

Filtering of small scale objects necessitates that positive and negative gradients interact,
motivating morphological operators to be described through the regions over which a
gradient must travel. Smoothing small contrast regions requires that significant gradient
magnitudes not interfere in diffusion. In describing morphological filters that do not inhibit
the smoothing of low contrast areas, filter types are defined by the net distance of gradient
movement and are unconcerned with the specific path a gradient undertakes. Consider the
sequence of two step functions shown in Figure 15. Application of morphological operators
to this sequence will never change the structure of the signal, as both gradients will travel in
the same direction and at the same speed. Morphological operators applied to monotonic
regions can only introduce delay.

18




Defining the height of the first step function

to have small magnitude (Y= 0) and the height ar |
of the second step function to be significant .
(a2 B(K,q,t)),  traditional  anisotropic

diffusion expressions will maintain the larger
edge function while smoothing the smaller
step. An ideal scale aware diffusion expression

attempts to reproduce the smoothing properties
of traditional anisotropic diffusion in the ’
absence of small spatial features. Incorporating @)
morphological operators into the diffusion
coefficient requires that larger gradients not be
translated to the positions occupied by the
smaller step function. The only spatial location
guaranteed not to contain a smaller gradient is
at the original location of the larger gradient.
Therefore, the simple criterion that must be .
satisfied by a morphological filter is that the . I
morphological sequences produce a net
translation of zero.

-1 a-t

This condition on the construction of ()
morphological filters that, when incorporated Figure 15. A sequence of two step
into the diffusion coefficient, allows the functions with arbitrary height.  The

equivalent gradient representation is

smoothing of regions of low contrast completes shown in (b).

this section. Analysis of finite width edge
" models developed criteria on the morphological operators for the identification of small scale
objects and required specific regions through which gradients must travel. Analysis of the
second edge sequence introduced no further constraints on the path of gradient movement,
but only defined the morphological filters to have a net gradient translation of zero.
Morphological operators, unlike the linear filters, exist which are capable of simultaneously
satisfying these conditions. As an example, the morphological open-close filter is
constructed from an erosion-dilation-dilation-erosion sequence and propagates the gradients
throughout the necessary region of influence while introducing a net translation of zero.

Introducing morphological operators into the diffusion coefficient is straightforward.
Using the coefficient presented in (5) as an example, a possible realization of a
morphological scale aware diffusion coefficient is

[ [V ((t-M)en) ]
c(VI)=e' * : (13)

where (IoM)eM is the open-close filtering of the signal I with structuring element M.

To display the effectiveness of a morphological diffusion coefficient, simulations were
conducted with three classes of the anisotropic diffusion coefficient. The first class was
dependent solely on local gradient information and represented by the traditional diffusion
coefficient expression, given as
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c(VI) = e—[lvkiu)z

where I is the original image and k is the gradient threshold. The second and third classes
employed scale-modified definitions for the gradient. The second class used a linear filter in
performing the gradient calculation, while the third class used a nonlinear morphological
filter. These classes were represented by diffusion coefficients described by

(14)

_( 165 +vy} )2
c(VI)=e' * /, (15)
where G is a Gaussian kernel with standard deviation o, and
[ [v(MpM)| )
c(VI)=e ¢ (16)

where M is a morphological structuring element and (I M)eM is the image I filtered with
an open-close filter.

Equivalent scale parameters for the linear and morphological filters in the scale aware
diffusion coefficients were chosen to provide information removal of similar scale, and both
were defined by satisfying conditions necessary for decimating by a factor of three. The
Gaussian kernel used in the second coefficient class was defined to have a standard deviation
of 6/m, as suggested to approximately satisfy Shannon’s sampling theorem in (Burt, 1981).
Similarly, the morphological kernel used in the third coefficient class was defined to be a
square structuring element of width five, as suggested to approximately satisfy the Homotopy
Preserving Critical Sampling Theorem in (Florencio, 1994).

Producing a qualitative evaluation of the three processes, the anisotropic diffusion
equation was applied to infrared imagery of a T-72 tank. Results are shown in Figure 16. As
may be observed, the diffusion equation based solely on local gradient information is unable
to remove channel noise and fine detail. The second coefficient class, using a linear filter
within its gradient calculation, removes these small features, but at the expense of
introducing edge movement and feature drift. (Notice the excessive smoothing of the tank
edges.) The morphological anisotropic diffusion algorithm is capable of overcoming both
deficiencies, removing the noise while maintaining edges. Quantitative studies are provided
in the next section.
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Figure 16. Three classes of anisotropic diffusion applied to the T-72 image: (a) original image;
(b) results obtained using original anisotropic diffusion; (c) results obtained using traditional scale
aware anisotropic diffusion; (d) results obtained using morphological anisotropic diffusion (16).
The morphological anisotropic diffusion process removes extraneous information introduced by
various environmental factors. Edges are also preserved, and the infrared imagery is enhanced.
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Morphological Diffusion Simulation

To display the effectiveness of the new morphological diffusion coefficient, simulations
were conducted with three classes of the anisotropic diffusion coefficient. The first class was
dependent solely on local gradient information and represented by the traditional diffusion
coefficient expression, given as

(!
c(VI)=e("), 17

where I is the original image and k is the gradient threshold. The second and third classes
employed scale-modified definitions for the gradient. The second class used a linear filter in
performing the gradient calculation, while the third class used a nonlinear morphological
filter. These classes were represented by diffusion coefficients described by

||V(G,*1)]|]2
k

o(VI)=e ( : (18)
where G, is a Gaussian kernel with standard deviation o, and

||\7((1.,M).1\4)||)2
k

c(VI)= e_( , 19

where M is a morphological structuring element and (IoM)eM is the image I filtered with
an open-close filter.

Equivalent scale parameters for the linear and morphological filters in the scale aware
diffusion coefficients were chosen to provide information removal of similar scale, and both
were defined by satisfying conditions necessary for subsampling a filtered representations by
a factor of three. The Gaussian kernel used in the second coefficient class was defined to
have a standard deviation of 6/7, as suggested to approximately satisfy Shannon’s sampling
theorem in (Burt, 1981). Similarly, the morphological kernel used in the third coefficient
class was defined to be a square structuring element of width five, as suggested to satisfy the
Homotopy Preserving Critical Sampling Theorem in (Florencio, 1994).

Producing a qualitative evaluation of the three processes, the anisotropic diffusion
equation was applied to synthetic imagery corrupted by 40% salt and pepper noise. Results
are shown in Figure 17. As can be seen, the diffusion equation based solely on local gradient
information is unable to remove impulsive noise, while both spatially enlarged coefficients
are capable of smoothing these small, high contrast objects and maintaining large scale
edges. Results for coefficient classes two and three are visually similar, although closer
inspection will show that the third class, the nonlinear morphological method, provides a
slight improvement in feature definition.

A second qualitative example of the three anisotropic diffusion processes was attained by
applying the smoothing operations to the cameraman image. These results are similar to
those achieved with the previous synthetic imagery, and they are presented in Figure 18.
Again, the first coefficient class, using a traditional gradient calculation, is unable to remove
fine detail, as evident by the existence of the small objects present on the ground. The
second coefficient class, using a linear filter within its gradient calculation, removes these
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small features, but at the expense of introducing edge movement and feature drift. (Notice
the excessive smoothing of the camera and the movement of the elbow.) The new
morphological anisotropic diffusion algorithm is capable of overcoming both deficiencies,
removing small objects while maintaining edge locality.

While qualitative comparison of the three methods of anisotropic diffusion begins to
distinguish the smoothing properties of the morphological diffusion coefficient, a
quantitative comparison of their edge detection accuracy displays the advantages of the new
diffusion expression. In determining the edge detection capabilities of the three variants of
anisotropic diffusion, synthetic imagery was again corrupted by 40% salt and pepper noise.
These images were then smoothed; and at each solution time, edges were identified and
compared with known edge locations. Recognizing edges in the filtered imagery was
accomplished with the use of a simple gradient based edge detector, well motivated by the
smoothing properties of the anisotropic diffusion equation, and the threshold of the edge
detector was defined to be equal to the gradient threshold of the diffusion coefficient, k.

Experimental comparison of edge detection performance was calculated using two
quantitative metrics. The first, Pratt’s edge quality measurement, is defined as

2:. 1+ o(d(i)*)
F= (20)
max{IA , I,}

where I4 is the number of edge points detected in the filtered image result, I; is the number of
edge points existing in the original, noise free imagery, d(i) is the Euclidean distance between
an edge location in the original image and the nearest detected edge, and « is a scaling
constant, set to the suggested value of 1/9 (Pratt, 1978). Perfect recovery of all edge
information in the original image results in an edge quality measurement of one (F=1); poor
edge localization lowers the value.

The second measurement group contains two more tangible representations of the
candidate filter performance, and the first measurement is defined to be the percentage of
original edge points successfully identified by the edge detection process. Correctly
recovering all edges in the initial image results in a 100% identification percentage, not
detecting a feature at its original location lowers the identification measurement. The second
measurement describes the ability of the edge detector to identify edges without detecting
false edge locations. Expanding on the previous measurement, edge features which are not
recognized and image locations which are erroneously classified as features are calculated.
Perfect recovery of the original image results in an identification measurement of 100%,
incorrect identification of any image location lowers the measurement.

The results of the numerical experiment are presented in Figure 19. It may be seen that
the linear coefficient initially outperforms the other diffusion variants in the edge quality
measurement, but produces the poorest identification percentage. As solution time increases,
the introduction of edge localization errors by the linear filter becomes more evident and is
displayed by the rapid decrease in matched features. Specifically, at solution time three, the
linear coefficient is unable to correctly identify the location of a single edge. The
morphological anisotropic diffusion method provides significant performance improvement,
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able to identify over 70% of the original edges and attain a solution quality measurement of
0.95.

3,0 fﬁ;-‘:,

B

Figure 17. Three classes of anisotropic diffusion applied to synthetic imagery: (a) original image corrupted
with 40% salt and pepper noise; (b) results obtained using original anisotropic diffusion; (c) results obtained
using traditional scale aware anisotropic diffusion; (d) results obtained using morphological anisotropic
diffusion (19). The gradient threshold, k=40, and the solution time, t=3.
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Figure 18. Three classes of anisotropic diffusion applied to the cameraman image: (a) original image; (b)
results obtained using original anisotropic diffusion; (c) results obtained using traditional scale aware
anisotropic diffusion; (d) results obtained using morphological anisotropic diffusion (19). The gradient

threshold, k=10, and the solution time, =20.
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Figure 19. Three quantitative measurements of edge detection performance:
edges correctly identified; (b) percent of image pixels incorrectly classified by the edge detector;
(c) results of Pratt’s edge quality measurement.
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Anisotropic Diffusion Pyramids

Construction of an anisotropic diffusion pyramid (ADP) requires selecting the scale
parameters of the anisotropic diffusion equation. These parameters should allow the filtered
result to be sampled without loss of information. In applying a pyramid structure to the IRST
problem, sampling is not viewed within the context of reconstruction but rather within the
context of spatial causality. Spatial causality describes a cause and effect relationship
between scale representations. In this section, the construction of image pyramids that utilize
the anisotropic diffusion equation as the scale generating operator will be considered.
Throughout this discussion, the anisotropic diffusion equation will be analyzed using
continuous input signals and treated as a piece-wise linear operator. Approximations of the
continuous diffusion expressions with discrete difference equations will also be considered.

Constructing an image pyramid with a fixed scale filter is possible only if the scale
generating function also produces a signal suitable for sampling. The diffusion equation
must therefore smooth all internal features and reduce their gradients below the gradient
threshold. The gradient of a sampled signal representation is proportional to the gradient of
the original representation by the sample factor S. A guarantee that small spatial features will
be removed in coarser scale depictions is given by smoothing all internal features such that
all gradients are less than /S, where k is the gradient threshold of the diffusion coefficient.

To derive a solution time that satisfies this requirement, we consider a single finite width
step function of small spatial size and height o. The filtered representation of the finite width
step function is then expressed as

a- e | 0<t<wo 1)

1
1/477:1‘
where ¢ is the magnitude of the impulse and ¢ is the solution time of the scale aware
anisotropic diffusion expression. Examining the derivative of a filtered impulse signal,
smoothing criteria becomes apparent. Edges will be removed from subsampled
representations if their gradients are less than k/S. Solution times assuring removal must
satisfy

P 1 =Y %
Sl ———e® |<Z, 0<t<oo 22)
ox \Jart S (

where o is the magnitude (maximum intensity) of the impulse, k is the gradient threshold of
the edge detection system, ¢ is the solution time of the scale aware anisotropic diffusion
expression, and S is the sample factor. Solving this equation, the value of the smoothing
parameter, s, is defined as

1
t >£—'§§n—e 2, (23)

where S is the sample factor. For an iterative approximation of the continuous anisotropic
diffusion equation, the number of diffusion iterations necessary for suitably filtering a signal
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would be approximately ¢, - At, where At is the time step used in the discrete realization of

the diffusion equation (Niessen, 1994).

The morphological diffusion process contains a second description of scale. This
additional filter parameter specifies the scope of the diffusion coefficient calculation and
defines the spatial size of objects that are determined to be “small” and subsequently
removed. Borrowing from the study of morphology, an image region may be viewed as a set
and the region over which a coefficient is calculated defined. The diffusion system must
preserve an object’s homotopy across sampling domains, where homotopy is simply a one-to-
one mapping of objects. Similar to the frequency based sampling strategy, homotopy will
only be guaranteed if all sets are removed that are spatially unsupported by the new sample
domain. This requires the identification and smoothing of all objects smaller than the sample
grid, so that after sampling they will not exist. Using morphological operators within a
diffusion coefficient, the spatial scale of diffusion is defined by the structuring element size
of the morphological operators. Ensuring the identification and removal of all objects
smaller than the sample grid, the morphological operators utilize structuring elements with
diameter greater than the sample factor. For constructing an anisotropic diffusion coefficient,

the structuring elements used by the morphological filters must have diameter of v2-8,
where § is the sample factor (Florencio, 1994).

With this result, an ADP may be constructed by successively filtering and subsampling
previous resolution representations. Using the traditional discrete approximation of the
partial differential equation presented in (3), construction of coarser resolution images within
an ADP may be expressed as

15{Ar)
IL=|:IL~1+At2(cNVN+cSVS+CEVE+CWVW)M] , (24)
is

m=]

where £, is the solution time ensuring spatial causality from (23), 1S denotes subsampling by
a factor of S, Aris the time step, and c is the scale aware diffusion coefficient. For the
generation of an ADP, the original image is filtered with anisotropic diffusion until the
appropriate solution time. This intermediate representation is then subsampled, and the result
is the first pyramid level. (The original image is defined as the zero level within an image
pyramid.) Higher levels of the multi-scale structure are computed by filtering and
subsampling previous resolution representations.

Multi-scale Tracking

The advantage of using a multi-resolution IRST technique is embedded in the utilization
of coarse scene representations for the initial identification of a target. Coarser scene
information is created by successively filtering and subsampling the original image, and its
use allows initial object identification to query information absent of noise and represented at
reduced sample densities. Maximizing the benefits of these coarse-to-fine search procedures
is accomplished by initially identifying an object at the coarsest resolution possible. In a
multi-scale procedure, this level is defined to be the root level of the search.
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The root level of an object
simply defines the coarsest
resolution representation in which
the object will be identifiable. The
procedure used for selecting the root
level of a coarse-to-fine search is
best illustrated with an example.
Consider the image presented in
Figure 20, consisting of two aircraft.
In determining the root level
necessary for the identification of the
smaller plane, two scene
measurements must be estimated.
The first measurement is the minor
axis length of the largest target

Figure 20. Designing a coarse to fine search that is
capable of identifying the smaller aircraft in the

feature. This measurement describes infrared image. Root level selection is dependent on
the pyramid level at which the target two variables, the minor axis of the target's largest
will be removed, and in this feature (y) and the minimum distance between the

example, the distance 18 pixels and target and other objects of similar or greater scale (2).

is denoted graphically with the

variable y. The second scene estimate to be acquired is the minimum distance between the
smallest object and other large scale features. This measurement describes the pyramid level
in which the two objects will merge. In the figure, the distance is represented with the
variable z and measured to be 55 pixels. After identifying the two scene measurements,
computation of the root level is accomplished by the procedure outlined below. In the
example, the root level of the smaller aircraft is found to be the third level of the image
pyramid.

The first step in deriving root level definitions is to model the arbitrary object as a
collection of smaller convex features. As an example, the jet aircraft in Figure 20 may be
modeled as a composition of three smaller features: the fuselage, wing, and landing gear.
Expressing an arbitrary object, O, as the union of a set of smaller convex sets, the object may
be described as

0=

Cx

0, where o,Mno; =D forVi,j<M, (25)

m
1

3
It

where O is the object of interest and o,, are individual features. Considering all targets as a
collection of convex features, the derivation of an object’s root level is straightforward.

Defining the root level of an object with respect to its own internal composition is the
first selection criteria considered in this subsection, and it necessitates defining the coarsest
pyramid level that contains the object. The anisotropic diffusion expression removes all
regions of small spatial scale, and for the complete removal of a target, the anisotropic
diffusion process must remove all features of the target. These features will be removed
according to their spatial size, with smaller features being removed before larger ones, and
the selection of pyramid levels which contain the target require the representation to contain
the largest target feature.
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Subsampling a target feature reduces its spatial dimension, and in an anisotropic diffusion
pyramid, spatial measurements of large objects, before and after sampling, are related by the
proportionality factor S, where S is the sample factor used for pyramid construction.
Subsampled objects have dimensions that are S the size of the original object, and the size
of a large object at pyramid level L may be expressed as

Y
yL=S_L9 (26)

where y is the original measurement and y; is the equivalent spatial dimension in the
subsampled domain.

Continuously filtering and subsampling an object should eventually result in its removal,
and within an anisotropic diffusion pyramid, a feature is defined to be removed when its
spatial size is smaller than the sample grid (y, < S). The largest feature of the target will
disappear in the construction of pyramid level L+1, when

S >SLL, Q7

where y is the smallest spatial dimension of the feature (the minor axis), S is the sample
factor, and L is the previous pyramid level.

Rearranging this equation produces the first definition of the root level of an object. The
coarsest pyramid level in which a target will exist may be expressed as

L, =max{L:L <log |y|-1}, (28)

where Ly is the root level defined by the internal characteristics of an object, S is the sample
factor used in pyramid construction, and y is the minor axis of the largest convex feature of
the target.

While the root level may be described by its internal composition, a complete definition
must consider the content and construction of its environment. A target may also elude
identification when multiple objects merge, as the search procedure will no longer be capable
of resolving either individual object. Describing the separation distance between the target
and the second object with the distance z, the two objects will merge in the construction of
pyramid level L+1, when

z
S > ‘S—L s (29)
where z is the minimum distance between the two objects, S is the sample factor used in the

construction of the pyramid, and L is the previous pyramid level. Rearranging (29) presents
the second description of the root level of a target, expressed as

L, =max{L: L <log|e| -1}, (30)

where Ly is the root level defined by the external characteristics of a scene.
The definition of the root level used in a coarse to fine search is determined both by an
object’s internal and external characteristics, and it may now be defined as
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L, = max{L:L <log; |d|-1}, (31)
where

d =min{ y,z}. (32)

With the selection of the root level, a coarse-to-fine search procedure may be initialized
to maximize the efficiency and structure of the ADP. These search methods identify an
object within coarse resolution representations and then use these results to constrain higher
resolution inspections. The practical realization of this search procedure begins by
identifying the target within the root level. In the
target tracking system wused for simulation,

identification utilizes binary edge maps of the
candidate target and the current scene. Edge maps — ﬁ:
are constructed by thresholding the gradient of the ]

image. An example of a multi-scale edge template

Figure 21. A multi-resolution template

is presented in Figure 21. Computing a binary for a semi truck. Coarser template
exclusive-OR  between coarse scale template representations are used to search
information and the scene facilitates locating an coarse scene descriptions within the
object in the root level of the image pyramid. This pyramid.

operation may be described as

Match(i, j) =Y. 3 T, (x,) @I, (x+i,y+j)
= , (33)

where T, is the template representation at the root level, I, is the scene representation at

the root level, and @ denotes an exclusive-OR operation. Higher values for the binary
template match correspond to higher similarity between template and scene, and in the
simulation results to follow, the highest match is defined to correspond to the target.

Having identified the best match between scene and template at location (i f), the goal of
a multi-scale IRST procedure is to use these results to guide and refine progressively higher
resolution inspections. ADPs were designed to maintain spatial causality, ensuring that a
features that exists at location (i,j) in a coarse resolution representation will exist within the

region (S-(i£%),S-(j+%)) in higher resolution depictions, where S is the sample factor

used in the construction of the image pyramid (Burt ez al., 1981). Using this relationship, the
realization of a coarse-to-fine search procedure is straightforward. Target identification
begins by locating the best match between edge template and scene, using (33). Higher
resolution information is then queried but only at four possible object locations. The
identification results attained from inspecting the level Lg.; are then used to constrain the
search of the next level, Lg,, and the procedure terminates after finding the target in the
original image, L.
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Experimental Results

Experimental results attest to the solution quality of the ADP. Here, three “real world”
image sequences are processed. Comparisons are presented between two IRST approaches.
The first method utilizes the multi-scale, multi-resolution ADP tracking mechanism. The
second method is a traditional, single resolution, tracking algorithm. In the following
simulations, solution quality will be described using two metrics: the measurement error
between an object’s identified location and the ground truth location and the computational
requirements of the search routine. The results will illustrate the strengths of the ADP
approach, specifically showing that it is a more robust and efficient solution to the search and
track problem than signal resolution methods.

Jet Sequence

The first image sequence used in the solution quality simulations consisted of 25 frames
of a jet airplane in flight. Each original image, and the base of the corresponding pyramid,
had a resolution of 256x256 pixels, and all pixels were capable of representing 256 intensity
levels. The ADPs were constructed with a 1 of 2 uniform sampling scheme (along each row
and column), a gradient threshold k = 15, and Ar = Y. Figure 22 displays the pyramid
constructed for the first frame of the sequence. Implementing a multi-resolution search for
the identification of the jet aircraft requires the definition of the root level, and the root level
was defined to be the third resolution representation above the original image.

Applying the coarse-to-fine search techniques to the target identification problem and
using the third level of the pyramid as the root level, object tracking tasks were performed
using the edge-based template matching routine. The result was a significant increase in
computational efficiency between the single resolution and multi-scale techniques. A single
resolution match required approximately 172 seconds per frame on a Sun Ultra 1/170, while
the multi-resolution approach required approximately 8 seconds per frame, including the

Figure 22. An infrared image of a jet airplane in flight and its corresponding ADP.
The root level is the coarsest resolution that contains the aircraft. Edge features
belonging to the aircraft are last found in the fourth largest image of the pyramid (the
third level).
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construction costs of the ADP. The effect
was a system performance improvement of

21 times tradition single-resolution
methods.
Besides providing computation

efficiency, multi-resolution techniques also
increase system robustness. Using the same
binary template matching routine, pixel
localization errors were computed for both
single and multi-resolution trials. These
results are summarized in Figure 23, where
the localization errors are expressed as the
Euclidean distance between identified
object locations and ground truth. For the
first 14 frames of the sequence, the
algorithms produce similar measurements.
In the final 11 images, the multi-scale
search was able to locate the target while
the single-resolution method was not. This
displays the inability of the single-
resolution method to accommodate slight
changes between images and the template.
The ADP is more resilient, taking
advantage of the high similarity between
coarse scale descriptions within the image
sequence.

To further display the robustness of the
ADP, simulations were performed on the
same sequence of images, corrupted by
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Figure 23. Localization errors for the jet
sequence. Errors were calculated for both the
single resolution and muiti-resolution
identification procedures by computing the
Euclidean distance between identified target
locations and ground truth. The two algorithm
produce equivalent results for the first 14
frames of the sequence. In the later frames of
the sequence, the single resolution technique
does not reliably identify the target.

Gaussian distributed noise. The mean-square signal to noise ratio of the test images was
15.72. As can be seen from the identification results presented in Figure 24, the pixel
localization error of the multi-scale technique increased in the presence of the additive noise,
but the coarse-to-fine search method was still capable of providing acceptable estimates of

the object location.

Conversely, the single resolution method was unable to reliably

determine the location of the target during any frame of the sequence. The ability to find an
object in high clutter allowed the multi-scale search and track system to provide a smaller
pixel localization error, with a mean error of 3.69 pixels compared to 195.29 pixels of the

single resolution system.
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Figure 24. Localization errors for the corrupted jet sequence. Errors were calculated for both the
single resolution and multi-resolution identification procedures by computing the Euclidean distance
between identified target locations and known position information. The ADP tracking system is
capable of identifying the target in noisy imagery and only introduces small errors into the localization
measurement. Single resolution identification techniques are not as robust, and the algorithm was
not capable of correctly classifying the target in a single frame of the sequence.

Semi Sequence

The second image sequence used for measuring the performance properties of the
anisotropic diffusion tracking system consisted of 74 infrared images of a semi truck in
motion. All images had a resolution of 320x240 pixels, and each pixel represented 256
intensity levels. The ADPs were constructed with a 1 of 2 uniform sampling scheme, a
gradient threshold (k) of 15, and a Arof 4. Figure 25 displays the pyramid constructed for
the first frame of the sequence. For the entire sequence, the most significant element of the
semi truck was the trailer. Therefore, the root level of the sequence was defined to be the
second resolution representation above the original image

Figure 25. The first frame of the semi sequence and its corresponding anisotropic diffusion
pyramid. The semi is visible only in the first three scene representations within the diffusion
pyramid, resulting in the selection of the second level of the pyramid as the root level of the
multi-scale search.
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The first performance measurement of the simulation was the comparison of
computational requirements between the multi-scale search and the single resolution
identification procedure. Applying the multi-resolution technique to the tracking, the target
recognition tasks were performed using a binary template matching routine. For the single
resolution match, the algorithm required approximately 46 seconds per frame on a Sun Ultra
1/170, while the multi-resolution technique needed approximately 6 seconds per frame.
These results show an overall system performance improvement of 7.7 times tradition single-
resolution methods.

While the semi sequence again shows the presence of computational enhancements
through the use of the ADP, the performance gains within this sequence account for only 1/3
of those attained with the previous jet aircraft simulation. As these two tracking sequences
utilize different pyramid levels for their root level, the differences between the performance
improvements within these images displays the sensitivity of the multi-scale method to root
level selection. Coarser root levels allow more efficient and robust solutions then finer root
levels.

Using the same binary template matching
routine, pixel localization errors were also computed
for both single and multi-resolution trials. These
results are summarized in Figure 26. Localization
errors are expressed as the Euclidean distance s
between the observed point and ground truth. These i
results show that the increased computational {-
efficiency of the multi-scale search does not
introduce extra localization error. For the entire
sequence, the multi-scale and single-scale
algorithms produce similar measurements. The
mean localization error for the anisotropic diffusion
tracking system was 1.08 pixels while the mean
localization error for the single resolution technique
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performed on the same set of images, but corrupted
by Gaussian distributed noise. The mean-square
signal to noise ratio of the test images was
approximately 15.34. As can be seen from the
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Figure 26. Localization errors for the

identification results presented in Figure 27, the
pixel localization error of the multi-scale technique
increased in the presence of noise. However, the
algorithm was still capable of estimating the object
location in the majority of the frames. The result of
the single resolution method was very much in
contrast, unable to locate the object during any
frame of the corrupted sequence. The ability to find
the target in noisy imagery allowed the multi-scale
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original semi sequence. Errors were
calculated for both the single
resolution and multi-resolution
identification procedures by
computing the Euclidean distance
between identified target locations
and known position information. The
two algorithm produce comparable
results, though the multi-scale
technique requires less
computational resources.




object recognition system to provide a smaller pixel localization error, with a mean error of
19.15 pixels compared to 140.32 pixels of the single resolution system.

Euclidean Errors for MURI-scale fdentifications Eudidean Erors lor Single Resoiution identiications

Figure 27. Localization errors for the noisy semi sequence. Errors were calculated for both the single
resolution and multi-resolution identification procedures by computing the Euclidean distance
between identified target locations and known position information. The multi-scale algorithm is
capable of detecting the target in a majority of the frames, denoted by the regions of low
measurement error. Single resolution techniques are unable to find the target in any frame, as may
be observed by the large measurement error within each frame of the sequence.

Truck Sequence

The final sequence used in the solution quality simulations consisted of 123 images of the
rear of a truck. The original images had a resolution of 320x240 pixels, and each pixel has a
range of 256 intensity levels. The pyramids used for this evaluation were constructed with a
1 of 2 uniform sampling scheme, a gradient threshold (k) of 15, and a Arof Y. Figure 28
shows the pyramid constructed for the first frame. To implement a multi-resolution search,
the root level of the object must be identified. For the entire sequence, the largest element of

i 5 RIS 3 R i

Figure 28. The first frame of the truck sequence and its corresponding anisotropic diffusion pyramid.
The truck is still visible in the sixth scene representation within the diffusion pyramid.
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the truck is the back of its trailer. Thus, the root
level of the sequence was defined to be the fifth
resolution representation above the original
image. However, presence of other large objects
in the scene necessitate selecting a lower initial
level for the multi-scale search (in this example,
the road and frame edge must be considered
objects). In the following simulations, the root
level of the target was defined to be the third
resolution representation above the original
image. Figure 30 shows the multi-scale edge
template.

Applying multi-resolution techniques to the
object recognition problem and using the third
level of the pyramid as the root level, object
recognition tasks were performed using a
binary, edge based, template matching routine.
For a single resolution match, the algorithm
required approximately 325 seconds per frame
on a Sun Ultra 1/170, while the multi-resolution
technique required approximately 9 seconds per
frame, including pyramid construction costs.
The results show a system performance
improvement of 36 times traditional single-
resolution methods, again displaying the
dependence of the anisotropic diffusion pyramid
to the selection of the root level.

Increased computational efficiency does not
introduce additional error into the identification
results, and using the binary template matching
routine, pixel localization errors were computed
for both single and multi-resolution trials.
These results are summarized in Figure 31,
where the localization error is expressed as the
Euclidean distance between the identified target
location and ground truth. For the first 55
frames, the algorithms produce similar
measurements. During the remaining images of
the sequence, portions of the truck become
occluded, with the top of the truck moving out
of the image during frames 56 to 78 and the side
of the truck occluded during the rest of the
sequence. Both identification techniques are
incapable of locating the target when the top of
the truck is absent from the frame; however, the
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Figure 29. The multi-scale template used
for the truck sequence.
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Figure 30. Localization errors for the
original truck sequence. Errors were
calculated for both the single resolution
and multi-resolution identification
procedures by computing the Euclidean
distance between identified target
locations and known position information.
The two algorithm initially produce
comparable results. At approximately
frame 55, significant portions of the truck
become occluded. Upon reappearance,
the multi-scale approach is capable of
identifying the slightly deformed target
while the single resolution technique is
not.




single-resolution method is also
unable to  accommodate the
occlusion of the side panel in the
later portions of the sequence.
Anisotropic diffusion pyramids, and
their coarse to fine search, are more
resilient to these target changes,
reacquiring the truck as it becomes
entirely visible in the scene. Overall,
the multi-scale technique had an
average error of 7.06 pixels and the
single resolution technique had an
average error of 68.31 pixels.

Performing the simulations Figure 31. The first frame of the noisy truck

on a corrupted representation of the sequence. The images were corrupted with Gaussian
Image sequence again displays the additive noise.

increased  robustness of  the

anisotropic diffusion pyramid. (The

image sequence was created by adding Gaussian noise to the original images, resulting in a
mean-square signal to noise ratio of 2.64, and the first frame of the noisy sequence is show in
Figure 32.) As can be seen from the data presented in Figure 33, the pixel localization error
of the multi-scale technique increases in the presence of noise, while the single resolution
method actually provides better results than attained on the original image set. The ability of
the anisotropic diffusion pyramid to provide similar solutions to the identification problem in
the presence of noise makes the multi-scale structure a more robust solution to the object
identification problem and allows its mean error to increase by only 14.60 pixels. The mean
error for the single resolution identification method decreased by 41.60 pixels, providing
little correspondence to the original image sequence results.
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Figure 32. Localization errors for the corrupted truck sequence. Errors were calculated for both
the single resolution and multi-resolution identification procedures by computing the Euclidean
distance between identified target locations and known position information. Using the
anisotropic diffusion pyramid produces similar results between the original and noisy
sequences.  Application of traditional, single resolution techniques produce significant
deviations in identification performance.
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